IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly.
نویسندگان
چکیده
Trans-autophosphorylation is among the most prevalent means of protein kinase activation, yet its molecular basis is poorly defined. In Toll-like receptor and interleukin-1 receptor signaling pathways, the kinase IRAK4 is recruited to the membrane-proximal adaptor MyD88 through death domain (DD) interactions, forming the oligomeric Myddosome and mediating NF-κB activation. Here we show that unphosphorylated IRAK4 dimerizes in solution with a KD of 2.5 μM and that Myddosome assembly greatly enhances IRAK4 kinase domain (KD) autophosphorylation at sub-KD concentrations. The crystal structure of the unphosphorylated IRAK4(KD) dimer captures a conformation that appears to represent the actual trans-autophosphorylation reaction, with the activation loop phosphosite of one IRAK4 monomer precisely positioned for phosphotransfer by its partner. We show that dimerization is crucial for IRAK4 autophosphorylation in vitro and ligand-dependent signaling in cells. These studies identify a mechanism for oligomerization-driven allosteric autoactivation of IRAK4 that may be general to other kinases activated by autophosphorylation.
منابع مشابه
Two Human MYD88 Variants, S34Y and R98C, Interfere with MyD88-IRAK4-Myddosome Assembly
Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threateni...
متن کاملThe mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists
We have developed the first assays that measure the protein kinase activities of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 reliably in human cell extracts, by employing Pellino1 as a substrate in conjunction with specific pharmacological inhibitors of IRAK1 and IRAK4. We exploited these assays to show that IRAK4 was constitutively active and that its intrinsic activity toward...
متن کاملThe N-terminal loop of IRAK-4 death domain regulates ordered assembly of the Myddosome signalling scaffold
Activation of Toll-like receptors induces dimerization and the recruitment of the death domain (DD) adaptor protein MyD88 into an oligomeric post receptor complex termed the Myddosome. The Myddosome is a hub for inflammatory and oncogenic signaling and has a hierarchical arrangement with 6-8 MyD88 molecules assembling with exactly 4 of IRAK-4 and 4 of IRAK-2. Here we show that a conserved motif...
متن کاملProbing Kinase Activation and Substrate Specificity with an Engineered Monomeric IKK2
Catalytic subunits of the IκB kinase (IKK), IKK1/IKKα, and IKK2/IKKβ function in vivo as dimers in association with the necessary scaffolding subunit NEMO/IKKγ. Recent X-ray crystal structures of IKK2 suggested that dimerization might be mediated by a smaller protein-protein interaction than previously thought. Here, we report that removal of a portion of the scaffold dimerization domain (SDD) ...
متن کاملIRAK4 Kinase Activation and Cytokine Induction 1 Interleukin 1/Toll-Like Receptor Induced Autophosphorylation Activates Interleukin 1 Receptor- Associated Kinase 4 and Controls Cytokine Induction in a Cell-Type Specific Manner**
IRAK4 is a central kinase in innate immunity but the role of its kinase activity is controversial. The mechanism of activation for IRAK4 is currently unknown; and little is known about the role of IRAK4 kinase in cytokine production, particularly in different human cell types. We show IRAK4 autophosphorylation occurs by an intermolecular reaction and that autophosphorylation is required for ful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 55 6 شماره
صفحات -
تاریخ انتشار 2014